Differential Fault Analysis Automation

نویسندگان

  • Sayandeep Saha
  • Ujjawal Kumar
  • Debdeep Mukhopadhyay
  • Pallab Dasgupta
چکیده

Characterization of all possible faults in a cryptosystem exploitable for fault attacks is a problem which is of both theoretical and practical interest for the cryptographic community. The complete knowledge of exploitable fault space is desirable while designing optimal countermeasures for any given crypto-implementation. In this paper, we address the exploitable fault characterization problem in the context of Differential Fault Analysis (DFA) attacks on block ciphers. The formidable size of the fault spaces demands an automated albeit fast mechanism for verifying each individual fault instance and neither the traditional, cipher-specific, manual DFA techniques nor the generic and automated Algebraic Fault Attacks (AFA) [10] fulfill these criteria. Further, the diversified structures of different block ciphers suggest that such an automation should be equally applicable to any block cipher. This work presents an automated framework for DFA identification, fulfilling all aforementioned criteria, which, instead of performing the attack just estimates the attack complexity for each individual fault instance. A generic and extendable data-mining assisted dynamic analysis framework capable of capturing a large class of DFA distinguishers is devised, along with a graph-based complexity analysis scheme. The framework significantly outperforms another recently proposed one [6], in terms of attack class coverage and automation effort. Experimental evaluation on AES and PRESENT establishes the effectiveness of the proposed framework in detecting most of the known DFAs, which eventually enables the characterization of the exploitable fault space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagnosis of Different Types of Air-Gap Eccentricity Fault in Switched Reluctance Motors Using Transient Finite Element Method

This paper presents a method for diagnosis of eccentricity fault in a switched-reluctance motor (SRM) during offline and standstill modes. In this method, the fault signature is differential induced voltage (DIV) achieved by injecting diagnostic pulses to the motor windings. It will be demonstrated by means of results that there is a correlation between differential induced voltage and eccentri...

متن کامل

Relaxed Differential Fault Analysis of SHA-3

In this paper, we propose a new method of differential fault analysis of SHA-3 which is based on the differential relations of the algorithm. Employing those differential relations in the fault analysis of SHA-3 gives new features to the proposed attacks, e.g., the high probability of fault detection and the possibility of re-checking initial faults and the possibility to recover internal state...

متن کامل

Fault Location in Active Distribution Networks Using Improved Whale Optimization Algorithm

To realize the self-healing concept of smart grids, an accurate and reliable fault locator is a prerequisite. This paper presents a new fault location method for active power distribution networks which is based on measured voltage sag and use of whale optimization algorithm (WOA). The fault induced voltage sag depends on the fault location and resistance. Therefore, the fault location can be f...

متن کامل

Differential Fault Analysis Automation on Assembly Code

Over the past decades, fault injection attacks have been extensively studied due to their capability to efficiently break cryptographic implementations. Fault injection attack models are normally determined by analyzing the cipher structure and finding exploitable spots in non-linear and permutation layers. However, this level of abstraction is often too high to distinguish vulnerable parts of ...

متن کامل

Error assessment in man-machine systems using the CREAM method and human-in-the-loop fault tree analysis

Background and Objectives: Despite contribution to catastrophic accidents, human errors have been generally ignored in the design of human-machine (HM) systems and the determination of the level of automation (LOA). This paper aims to develop a method to estimate the level of automation in the early stage of the design phase considering both human and machine performance. Methods: A quantita...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017